Communications to the Editor

KOBUTIMYCINS A AND B, NEW ALKALOID ANTIBIOTICS PRODUCED BY A Streptomyces STRAIN

Sir:

New alkaloid antibiotics named kobutimycins A (1) and B (2) (Fig. 1) were isolated from the culture broth of a streptomycete strain No. TA3341, which was isolated from a soil sample collected at Kobutizawa, Yamanashi Prefecture, Japan. The strain has been classified as *Streptomyces* sp. TA3341. In this communication we wish to report the fermentation, isolation, structural elucidation and biological properties of kobutimycins.

A loopful of slant culture of strain TA3341 was inoculated into a 500-ml Erlenmeyer flask containing 110 ml of production medium consisting of glycerol 2%, Bacto-Soytone 1%, CaCO₃ 0.4% (pH 7.0 before autoclaving), and cultured at 27°C on a rotary shaker (180 rpm) until the production reached maximum in 2 days. The broth filtrate (5 liters) was extracted twice with ethyl acetate (5 liters \times 2 times). The extract was concentrated to dryness under reduced pressure, and the crude residue (1.25 g) was applied to a slica gel column (100 ml) equilibrated with CHCl₃. The column was developed with 300 ml of CHCl₃ - MeOH (100:1). The active fractions were pooled and concentrated to give 57 mg of oily residue. From the residue, two components 1 and 2 were purified by preparative HPLC (Capcell Pak C18 SG120, 20×250 mm, Shiseido) using MeOH - $H_2O(7:3)$ as solvent system with detection at 254 nm. These active eluates were concentrated to dryness yielding 23 mg of 1 and 28 mg of 2.

The physico-chemical properties of both substances are summarized in Table 1. Compounds 1 and 2 were obtained as colorless oily substances. They were labile as such oils but stable in organic solvents such as MeOH, EtOAc and CH₃Cl. The molecular formulae were established as $C_{19}H_{25}NO_5$ for 1 and $C_{20}H_{27}NO_5$ for 2 by HRFAB-MS spectra and ¹³C NMR spectra. In their UV spectra, λ_{max} at 257 nm in their neutral solution was shifted to longer wavelengths (*ca*. 65 nm) in their acidic solution. This result suggested that 1 and 2 have the conjugated imino moiety in their structure¹). Their IR spectra exhibited characteristic absorption at 1740 cm⁻¹ which is attributed to the ester bond. The ¹H and ¹³C NMR spectral data of 1 and 2 are summarized in Table 2. The multiplicities of carbon signals were determined by the distortionless enhancement by polarization transfer (DEPT) experiment.

In the ¹H NMR spectrum of **1**, five methyl proton signals and two methylene proton signals were easily recognizable. Furthermore, oxygen-bearing methine proton signals (δ 4.42, 4.91 and 5.74) and olefinic proton signals (δ 5.46 and 6.82) were observed. In addition to these signals, the ¹H-¹H shift correlation spectroscopy (COSY) experiment indicated the presence of the following 3 fragments:

$$\begin{array}{ccc} N-CH_2-CH_2-CH & CH-CH-CH-CH_3 & C-CH_3\\ 3 & 2 & 0 & 0 & 0 \\ O & O & O & CH_3 \end{array}$$

The ¹H-¹³C long range connectivities of kobutimycins were determined by the ¹H-detected heteronuclear multiple-bond ¹H-¹³C correlation spectroscopy (HMBC) experiment. In compound 1, an oxygen-bearing methine proton (1a-H, δ 4.42) was coupled to an oxygen-bearing quaternary carbon (C-7a, δ 55.3) and imino carbon (C-4a, δ 171.2). Methylene protons (3-Ha, δ 3.66 and 3-Hb, δ 3.80) were coupled to the imino carbon (C-4a). Methyl protons (5-CH₃, δ 1.98) were coupled to the imino carbon (C-4a) and to two olefinic carbons (C-5, δ 114.4 and C-6, δ 143.1). An olefinic proton (6-H, δ 6.82) was coupled to the imino carbon (C-4a), an oxygen-bearing quaternary carbon (C-7a) and an olefinic carbon (C-5). These long range coupling data suggested the presence of a pyrindine skeleton. An oxygen-bearing methine proton (2'-H, δ 5.74) and two methyl protons (2"-CH₃, δ 1.16 and 3"-H, δ 1.14) were coupled to an ester carbonyl carbon (C-1", δ 175.5). Furthermore, an oxygen-bearing methine proton (3'-H, δ 4.91) and methyl protons at $\delta 2.00$ were coupled to an ester carbonyl carbon at δ 170.5. A summary of the HMBC experiment of 1 is shown in Fig. 2. NOEs of 1 were observed between

Fig. 1. Structures of kobutimycins A (1) and B (2).

	Kobutimycin A	Kobutimycin B
Appearance	Colorless oily substance	Colorless oily substance
Molecular formula HRFAB-MS (m/z)	C ₁₉ H ₂₅ NO ₅	C ₂₀ H ₂₇ NO ₅
Found:	$348.1805 (M + H)^+$	$362.1967 (M+H)^+$
Calcd:	348.1811	362.1968
$[\alpha]_{D}^{22}$ (c 1.0, CHCl ₃)	+88.2	+107.2
UV λ_{\max}^{MeOH} nm (ε)	212.0 (5,600), 256.8 (14,500)	207.6 (7,100), 256.8 (16,100)
$\lambda_{\max}^{MeOH-HCl}$ nm (ε)	230.0 (11,700), 321.8 (11,500)	232.0 (12,900), 322.8 (12,800)
$\lambda_{\max}^{MeOH-NaOH}$ nm (ε)	219.6 (sh, 6,800), 258.4 (16,300)	211.2 (7,000), 257.6 (15,400)
IR (KBr) cm^{-1}	2980, 2950, 1740, 1660, 1380, 1240, 1160, 1060, 920	2980, 2950, 1740, 1660, 1380, 1240, 1180, 1150, 1070, 920
Solubility		
Soluble:	<i>n</i> -Hexane, CHCl ₃ , EtOAc, MeOH, CH ₃ COCH ₃	<i>n</i> -Hexane, CHCl ₃ , EtOAc, MeOH, CH ₃ COCH ₃
Insoluble:	H ₂ O	H ₂ O
TLC ^a (Rf value) (I)	0.20	0.21
(II)	0.48	0.50
HPLC ^b (Rt, minutes) HVPE ^c	4.82	6.42
(Rm value, $alanine = 1.0$)	0.82	0.80

Table 1. Physico-chemical properties of kobutimycins A (1) and B (2).

^a Silica gel TLC (Merck Art 5715), solvent system (I) CHCl₃-MeOH (100:1) (II) EtOAc.

^b Column, Capcell Pak C18 SG120 4.6×150 mm (Shiseido); mobile phase, MeOH-H₂O (70:30); flow rate, 1.0 ml/minute; detection, UV 254 nm.

[°] HVPE in HCOOH - CH₃COOH - H₂O (1:3:36) under 2000 V for 30 minutes.

Table 2. ¹H and ¹³C NMR spectral data of kobutimycins A (1) and B (2) (400 MHz and 100 MHz, respectively, in CDCl₃).

Position	Kobutimycin A		Kobutimycin B	
	$\delta_{\rm C}$ (ppm)	$\delta_{\rm H}$ (ppm, J in Hz)	$\delta_{\rm C}$ (ppm)	$\delta_{\rm H}$ (ppm, J in Hz)
1a	60.6	4.42 br s*	60.6	4.42 br s
2	22.2	1.63, dt, J=5.6, 12.6, 14.8,	22.2	1.63 m,
		2.24 m, J=5.5, 14.8		2.24 m, J=14.8
3	44.0	3.66 dt, J=5.5, 12.6,	44.0	$3.66 \mathrm{dt}, J = 5.6, 12.4,$
		3.80 dd, J=5.5, 15.1		3.80 dd, J=5.6, 15.4
4a	171.2		171.2	
5	144.4		144.4	
5-CH ₃	11.9	1.98 s	11.9	1.98 s
6	143.1	6.82 br s	143.1	6.82 br s
7	140.1		140.1	
7a	55.3		55.2	
1'	118.4	5.46 d, $J = 10.0$	118.5	5.46 d, J=10.0
2'	68.4	5.74 dd, J=3.8, 10.0	68.3	5.75 dd, J=4.0, 10.0
3'	70.9	4.91 m, J=3.8, 6.6	71.0	4.91 m, J = 4.0, 6.0
4'	14.5	1.24 d, $J = 6.6$	14.5	1.24 d, $J = 6.0$
3'-OC(=O)	170.5		170.5	
$3'-OC(=O)-CH_3$	21.0	2.00 s	21.0	2.00 s
1″	175.5		175.1	
.2″	34.0	2.53 m, J=6.9	41.1	2.36 m, $J = 7.2$
3″	18.7	1.14 d, J=6.9	16.6	1.13 d, J=7.2
2″-CH ₃	19.0	1.16 d, $J = 6.9$		
2″-CH ₂			26.6	1.45 m, $J = 6.6$,
				1.66 m
2"-CH ₂ CH ₃	_		11.5	0.89 t, $J = 7.8$

* Multiplicity.

Fig. 2. Summary of the CH long range couplings (\rightarrow) observed in the HMBC spectrum of kobutimycin A.

Table 3. Antimicrobial spectrum of kobutimycins A (1) and B (2).

Test organisms	MIC (µg/ml)				
rest organishis	Medium*	1	2		
Staphylococcus aureus FDA 209P	а	25	25		
Micrococcus luteus IFO 3333	а	12.5	12.5		
Bacillus subtilis PCI 219	а	25	25		
Escherichia coli K-12	а	>100	>100		
Klebsiella pneumoniae PCI 602	а	>100	>100		
Candida albicans 3147	b	>100	>100		
Saccharomyces cerevisiae F-7	b	50	50		
Pyricularia oryzae	b	50	50		
Rhizocutonia solani	b	12.5	50		
Rosellinia necatrix	с	3.1	12.5		
Phomopsis fukushii PF-6B-1	с	50	50		

a: Mueller-Hinton agar (Difco), 37°C, 18 hours.
b: Nutrient agar+glucose 1%, 27°C, 42 hours.

c: Potato-sucrose agar, 27°C, 4 days.

6-H (δ 6.82) and 1'-H (δ 5.46). These NOEs revealed that relative position between the chromophore and the side chain.

Based on these results, the total planar structure of 1 was determined to be (7Z)-5-methyl-7-[2'-(2''-methylpropionyloxy)-3'-acetoxy]butylidenela,2,3,7-tetrahydrocyclopent[b]oxireno[c]pyridine (Fig. 1). The ¹H and ¹³C NMR spectra of 2 were quite similar to those of 1 except the proton signals at high field region. The NMR experiments of 2 suggested the presence of a 2-methylbutyryl group instead of the 2-methylpropionyl group of 1. Thus, the structure of 2 was determined as shown in Fig. 1.

Kobutimycins are structurally similar to the

known alkaloid antibiotics such as abikoviromycin $(latumcidin)^{1 \sim 3}$, dihydrolatumcidin⁴, *n*-hydroxy dihydroabikoviromycin⁵ and hatomamicin⁶.

The antimicrobial activity of kobutimycins were tested according to the agar dilution method with two-fold dilution. The results are summarized in Table 3. Kobutimycins showed weak activity against Gram-positive bacteria, and some phytopathogenic fungi. Cytotoxicities against lymphoid leukemia L1210 with IC₅₀ value were $0.19 \,\mu$ g/ml in 1 and $0.11 \,\mu$ g/ml in 2.

Acknowledgments

The authors wish to thank Mr. KATSUHISA YAMAZAKI (Institute for Chemotherapy) for cytotoxicity assays.

	Kenji Kanbe
	Hiroshi Naganawa
	Yoshiro Okami
	Tomio Takeuchi
Institute of 1 3-14-23 Kan Tokyo 141, .	Microbial Chemistry, nosaki, Shinagawa-ku, Japan
(Received	May 11, 1992)

References

- GUREVICH, A. I.; M. N. KOLOSOV, V. G. KOROBKO & V. V. ONOPRIENKO: The structure of abikoviromycin. Tetrahedron Lett. 18: 2209~2212, 1968
- UMEZAWA, H.; T. TAZAKI & S. FUKUYAMA: An antiviral substance, abikoviromycin, produced by Streptomyces species. J. Antibiotics 5: 469~476, 1952
- SAKAGAMI, Y.; R. UTAHARA, K. YAGISHITA & H. UMEZAWA: Identity of latumcidin with abikoviromycin. J. Antibiotics, Ser. A 11: 231~232, 1958
- SETO, H.; T. SATŌ, H. YONEHARA & W. C. JANKOWSKI: Application of carbon-13 in biosynthetic studies; FT-¹³C nuclear magnetic resonance spectra of dihydrolatumcidin. J. Antibiotics 26: 609~611, 1973
- TAKAHASHI, S.; K. SERITA, R. ENOKITA, T. OKAZAKI & T. HANEISHI: A new antibiotic, N-hydroxydihydroabikoviromycin. Annu. Rep. Sankyo Res. Lab. 38: 105~108, 1986
- 6) IMAI, H.; S. FUJITA, K. SUZUKI, M. MORIOKA, T. TOKUNAGA, M. SHIMIZU, S. KADOTA, T. FURUYA & T. SAITO: Hatomamicin (YL-0358M-A), a new alkaloid antibiotic: Fermentation, isolation, structure, and biological properties. J. Antibiotics 42: 1043~1048, 1989